/*
 * Parsodus - A language agnostic parser generator
 * Copyright © 2016-2017 Thomas Avé, Robin Jadoul, Kobe Wullaert
 * 
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
 * OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "AST.h"

#include <cmath>
#include <functional>
#include <map>
#include <string>

namespace calc {

namespace {
    using d2dfn = double(*)(double);
    std::function<double(const Variables&, const Functions&, FunctionArguments&)> wrap(std::function<double(double)> fn) {
        return [fn](const Variables& vars, const Functions& funs, FunctionArguments& args) -> double{
            if (args.size() != 1)
                return 0;
            return fn(args[0]->eval(vars, funs));
        };
    }

    std::map<std::string, std::function<double(const Variables&, const Functions&, FunctionArguments&)>> builtins = 
    {
        {"if", [](const Variables& vars, const Functions& funs, FunctionArguments& args) -> double {
            if (args.size() != 3)
                return 0;
            double test = args[0]->eval(vars, funs);
            if (test == 0)
                return args[2]->eval(vars, funs);
            else
                return args[1]->eval(vars, funs);
        }},
        {"sin", wrap((d2dfn)(std::sin))},
        {"cos", wrap((d2dfn)(std::cos))},
        {"tan", wrap((d2dfn)(std::tan))},
        {"asin", wrap((d2dfn)(std::asin))},
        {"acos", wrap((d2dfn)(std::acos))},
        {"atan", wrap((d2dfn)(std::atan))},
        {"abs", wrap((d2dfn)(std::fabs))}
    };
}

Number::Number(double d) : m_val(d) {}
double Number::eval(const Variables&, const Functions&) const {
    return m_val;
}

Var::Var(std::string name) : m_name(name) {}
double Var::eval(const Variables& vars, const Functions&) const {
    auto v = vars.find(m_name);
    if (v != vars.end())
        return v->second;
    return 0;
}
std::string Var::getName() const {
    return m_name;
}

Binop::Binop(std::unique_ptr<AST>&& left, std::string op, std::unique_ptr<AST>&& right)
    : m_left(std::move(left)), m_right(std::move(right)), m_op(op) {}
double Binop::eval(const Variables& vars, const Functions& funs) const {
    double left = m_left->eval(vars, funs);
    double right = m_right->eval(vars, funs);
    if (m_op == "+")
        return left + right;
    else if (m_op == "-")
        return left - right;
    else if (m_op == "*")
        return left * right;
    else if (m_op == "/")
        return left / right;
    else if (m_op == "^")
        return std::pow(left, right);
    else if (m_op == "<")
        return left < right ? 1 : 0;
    return 0;
}

Unop::Unop(std::string op, std::unique_ptr<AST>&& operand) : m_op(op), m_operand(std::move(operand)) {}
double Unop::eval(const Variables& vars, const Functions& funs) const {
    if (m_op == "-")
        return -m_operand->eval(vars, funs);
    return 0;
}

double FormalParameters::eval(const Variables&, const Functions&) const {
    return 0;
}
void FormalParameters::push_back(std::unique_ptr<AST>&& arg) {
    m_args.emplace_back(std::move(arg));
}
std::deque<std::unique_ptr<AST>>::const_iterator FormalParameters::begin() {
    return m_args.begin();
}
std::deque<std::unique_ptr<AST>>::const_iterator FormalParameters::end() {
    return m_args.end();
}

double FunctionArguments::eval(const Variables&, const Functions&) const {
    return 0;
}
std::unique_ptr<AST>& FunctionArguments::operator[](std::size_t idx) {
    return m_args[idx];
}
void FunctionArguments::push_back(std::unique_ptr<AST>&& arg) {
    m_args.push_back(std::move(arg));
}
std::size_t FunctionArguments::size() const {
    return m_args.size();
}

FunctionCall::FunctionCall(std::string name, std::unique_ptr<FunctionArguments>&& arguments) : m_name(name), m_arguments(std::move(arguments)) {}
double FunctionCall::eval(const Variables& vars, const Functions& funs) const {
    auto fp = funs.find(m_name);
    if (fp == funs.end()) {
        if (builtins.count(m_name)) {
            return builtins[m_name](vars, funs, *m_arguments);
        } else {
            return 0;
        }
    }
    Function& fun = *dynamic_cast<Function*>((fp->second.get()));

    if (m_arguments->size() != fun.getParams().size()) return 0;

    Variables newVars = vars;
    std::size_t i = 0;
    for (const std::string& param : fun.getParams()) {
        newVars[param] = (*m_arguments)[i]->eval(vars, funs);
        i++;
    }
    return fun.eval(newVars, funs);
}

Function::Function(std::deque<std::string> formalParams, std::unique_ptr<AST>&& body)
    : m_formalParams(std::move(formalParams)), m_body(std::move(body)) {}
double Function::eval(const Variables& vars, const Functions& funs) const {
    return m_body->eval(vars, funs);
}

const std::deque<std::string>& Function::getParams() const {
    return m_formalParams;
}

} /* calc  */