Remove spell files
This commit is contained in:
parent
c74d9b1a5b
commit
cc5c73095f
|
@ -1,53 +0,0 @@
|
||||||
Avé
|
|
||||||
Sint-Pietersvliet
|
|
||||||
Starcraft
|
|
||||||
Locobot
|
|
||||||
DQN-based
|
|
||||||
overcomplete
|
|
||||||
QuaRL
|
|
||||||
DDPG
|
|
||||||
DQN
|
|
||||||
softmax
|
|
||||||
logits
|
|
||||||
distill
|
|
||||||
action-probablities
|
|
||||||
UMAP
|
|
||||||
XS
|
|
||||||
DoReFa
|
|
||||||
DoReFa-Net
|
|
||||||
dequantized
|
|
||||||
Tarrasque
|
|
||||||
Liefstein
|
|
||||||
Juandissimo
|
|
||||||
Philfather
|
|
||||||
lich
|
|
||||||
liches
|
|
||||||
Archfey
|
|
||||||
Feywild
|
|
||||||
Bulette
|
|
||||||
Domdidle
|
|
||||||
Koryk
|
|
||||||
Ctheah
|
|
||||||
TODO
|
|
||||||
artifacts
|
|
||||||
stochasticity
|
|
||||||
playthrough
|
|
||||||
StateManager
|
|
||||||
defult
|
|
||||||
subclassing
|
|
||||||
spacebar
|
|
||||||
Latré
|
|
||||||
requantizing
|
|
||||||
rvalue
|
|
||||||
POMDPs
|
|
||||||
DQNs
|
|
||||||
Lumentis
|
|
||||||
Strahd
|
|
||||||
Irismore
|
|
||||||
Copperford
|
|
||||||
underdark
|
|
||||||
Violetton
|
|
||||||
Rainbowsmith
|
|
||||||
Whitestead
|
|
||||||
artificing
|
|
||||||
Dwarven
|
|
|
@ -1,2 +0,0 @@
|
||||||
WHITESPACE_RULE
|
|
||||||
PROFANITY
|
|
|
@ -1,10 +0,0 @@
|
||||||
{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\QBecause of this, linear methods are usually used in combination with PTQ for network parameters and to (de-)quantize the network inputs and outputs, as in those cases it is important that the relative values behind these representations are accurately maintained.\\E$"}
|
|
||||||
{"rule":"AFFORD_VBG","sentence":"^\\QInitial work in the area of applying knowledge distillation in order to train low-precision neural networks in a supervised learning setting was done by \\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q.\\E$"}
|
|
||||||
{"rule":"PRP_VBG","sentence":"^\\QThere is an additional benefit to training the low-precision network based on a full-precision teacher network compared to training it directly using more traditional DRL algorithms, such as DQN or PPO.\\E$"}
|
|
||||||
{"rule":"CD_NN","sentence":"^\\Q3 Linear 1 Compression Ratio Parameters Student XXS 16 16 16 32 47.1x 35 796 Student XS 16 16 16 64 27.6x 61 044 Student S 16 16 16 128 15.1x 111 540 Student M 16 32 32 256 4.0x 424 276 Student L 32 64 64 256 1.9x 882 084 Student XL 32 64 64 512 1x 1 686 180 Student XXL 64 64 64 1024 0.5x 3 335 364 Sizes for the students used in our policy distillation experiments on the Atari Breakout environment.\\E$"}
|
|
||||||
{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\QNetwork Conv.\\E$"}
|
|
||||||
{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\Q1 Conv.\\E$"}
|
|
||||||
{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\Q2 Conv.\\E$"}
|
|
||||||
{"rule":"ALLOW_TO","sentence":"^\\QA footnote says that in theory certain intelligent monstrosities could also train to become more powerful and throw off the bindings of age.\\E$"}
|
|
||||||
{"rule":"MORFOLOGIK_RULE_EN_GB","sentence":"^\\QA quest: Book with golden hard-cover, located in a tower between Pan's village and Weathar.\\E$"}
|
|
||||||
{"rule":"EN_COMPOUNDS","sentence":"^\\Q\\E(?:Dummy|Ina|Jimmy-)[0-9]+\\Q take this approach for a multi-task policy distillation, where a single agent is trained based on several teachers that are each specialized in a single task, with the goal of training a single student that is able to perform all tasks.\\E$"}
|
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue